Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.

نویسندگان

  • Z Schuss
  • B Nadler
  • R S Eisenberg
چکیده

Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result is a coupled system of averaged Poisson and Nernst-Planck equations (CPNP) involving conditional and unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged force on a single ion, which is the sum of two components. The first component is the gradient of a conditional electric potential that is the solution of Poisson's equation with conditional and permanent charge densities and boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system is not complete, however, because the electric potential satisfies Poisson's equation with conditional charge densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way, continuum equations with averaged charge densities and mean-fields can be used to describe permeation through a protein channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions to a nonlinear Poisson-Nernst-Planck system in an ionic channel

A limiting one-dimensional Poisson-Nernst-Planck (PNP) equations is considered, when the three-dimensional domain shrinks to a line segment, to describe the flows of positively and negatively charged ions through open ion channel. The new model comprises the usual drift diffusion terms and takes into account for each phase, the bulk velocity defined by (4) including the water bath for ions (see...

متن کامل

A Wasserstein Gradient Flow Approach to Poisson-Nernst-Planck Equations

The Poisson-Nernst-Planck system of equations used to model ionic transport is interpreted as a gradient flow for the Wasserstein distance and a free energy in the space of probability measures with finite second moment. A variational scheme is then set up and is the starting point of the construction of global weak solutions in a unified framework for the cases of both linear and nonlinear dif...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

A numerical solver of 3D Poisson Nernst Planck equations for functional studies of ion channels

Recent results of X-Ray crystallography have provided important information for functional studies of membrane ion channels based on computer simulations. Because of the large number of atoms that constitute the channel proteins, it is prohibitive to approach functional studies using molecular dynamic methods. To overcome the current computational limit we propose a novel approach based on the ...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Mathematical Models of Ionic Flow Through Open Protein Channels

The subject of this dissertation is a mathematical and physical study of ion flow through open protein channels of biological membranes. Protein channels are macromolecules embedded in biological membranes, through which almost all transfer of ions into and out of living cells is done. There are hundreds of different protein channels with diverse functions, ranging from the transfer of electric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 64 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001